11 research outputs found

    Design and clinical evaluation of an image-guided surgical microscope with an integrated tracking system

    Get PDF
    A new image-guided microscope system using augmented reality image overlays has been developed. With this system, CT cut-views and segmented objects such as tumors that have been previously extracted from preoperative tomographic images can be directly displayed as augmented reality overlays on the microscope image. The novelty of this design stems from the inclusion of a precise mini-tracker directly on the microscope. This device, which is rigidly mounted to the microscope, is used to track the movements of surgical tools and the patient. In addition to an accuracy gain, this setup offers improved ergonomics since it is much easier for the surgeon to keep an unobstructed line of sight to tracked objects. We describe the components of the system: microscope calibration, image registration, tracker assembly and registration, tool tracking, and augmented reality display. The accuracy of the system has been measured by validation on plastic skulls and cadaver heads, obtaining an overlay error of 0.7mm. In addition, a numerical simulation of the system has been done in order to complement the accuracy study, showing that the integration of the tracker onto the microscope could lead to an improvement of the accuracy to the order of 0.5mm. Finally, we describe our clinical experience using the system in the operation room, where three operations have been performed to dat

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Image-guided surgical microscope with mounted minitracker

    No full text
    A new image-guided microscope using augmented reality overlays has been developed. Unlike other systems, the novelty of our design consists in mounting a precise mini and low-cost tracker directly on the microscope to track the motion of the surgical tools and the patient. Correctly scaled cut-views of the pre-operative computed tomography (CT) stack can be displayed on the overlay, orthogonal to the optical view or even including the direction of a clinical tool. Moreover, the system can manage three-dimensional models for tumours or bone structures and allows interaction with them using virtual tools, showing trajectories and distances. The mean error of the overlay was 0.7 mm. Clinical accuracy has shown results of 1.1–1.8 mm

    Multimodal augmented reality system for surgical microscopy

    No full text
    Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system

    Augmented reality endoscopic system (ARES): preliminary results

    No full text
    During endoscopic surgery, it is difficult to ascertain the anatomical landmarks once the anatomy is fiddled with or if the operating area is filled with blood. An augmented reality system will enhance the endoscopic view and further enable surgeons to view hidden critical structures or the results of preoperative planning

    Design and clinical evaluation of an image-guided surgical microscope with an integrated tracking system

    No full text
    A new image-guided microscope system using augmented reality image overlays has been developed. With this system, CT cut-views and segmented objects such as tumors that have been previously extracted from preoperative tomographic images can be directly displayed as augmented reality overlays on the microscope image. The novelty of this design stems from the inclusion of a precise mini-tracker directly on the microscope. This device, which is rigidly mounted to the microscope, is used to track the movements of surgical tools and the patient. In addition to an accuracy gain, this setup offers improved ergonomics since it is much easier for the surgeon to keep an unobstructed line of sight to tracked objects. We describe the components of the system: microscope calibration, image registration, tracker assembly and registration, tool tracking, and augmented reality display. The accuracy of the system has been measured by validation on plastic skulls and cadaver heads, obtaining an overlay error of 0.7 mm. In addition, a numerical simulation of the system has been done in order to complement the accuracy study, showing that the integration of the tracker onto the microscope could lead to an improvement of the accuracy to the order of 0.5 mm. Finally, we describe our clinical experience using the system in the operation room, where three operations have been performed to date

    The neuronal-specific SGK1.1 kinase regulates δ-epithelial Na+ channel independently of PY motifs and couples it to phospholipase C signaling

    No full text
    Wesch D, Miranda P, Afonso-Oramas D, Althaus M, Castro-Hernandez J, Dominguez J, Morty RE, Clauss W, Gonzalez-Hernandez T, Alvarez de la Rosa D, Giraldez T. The neuronalspecific SGK1.1 kinase regulates delta-epithelial Na+ channel independently of PY motifs and couples it to phospholipase C signaling. Am J Physiol Cell Physiol 299: C779-C790, 2010. First published July 14, 2010; doi:10.1152/ajpcell.00184.2010.-The delta-subunit of the epithelial Na+ channel (ENaC) is expressed in neurons of the human and monkey central nervous system and forms voltage-independent, amiloride-sensitive Na+ channels when expressed in heterologous systems. It has been proposed that delta-ENaC could affect neuronal excitability and participate in the transduction of ischemic signals during hypoxia or inflammation. The regulation of delta-ENaC activity is poorly understood. ENaC channels in kidney epithelial cells are regulated by the serum-and glucocorticoid-induced kinase 1 (SGK1). Recently, a new isoform of this kinase (SGK1.1) has been described in the central nervous system. Here we show that delta-ENaC isoforms and SGK1.1 are coexpressed in pyramidal neurons of the human and monkey (Macaca fascicularis) cerebral cortex. Coexpression of delta beta gamma-ENaC and SGK1.1 in Xenopus oocytes increases amiloride-sensitive current and channel plasma membrane abundance. The kinase also exerts its effect when delta-subunits are expressed alone, indicating that the process is not dependent on accessory subunits or the presence of PY motifs in the channel. Furthermore, SGK1.1 action depends on its enzymatic activity and binding to phosphatidylinositol(4,5)-bisphosphate. Physiological or pharmacological activation of phospholipase C abrogates SGK1.1 interaction with the plasma membrane and modulation of delta-ENaC. Our data support a physiological role for SGK1.1 in the regulation of delta-ENaC through a pathway that differs from the classical one and suggest that the kinase could serve as an integrator of different signaling pathways converging on the channel

    Sequential functions of CPEB1 and CPEB4 regulate pathologic expression of vascular endothelial growth factor and angiogenesis in chronic liver disease.

    No full text
    BACKGROUND & AIMS: Vascular endothelial growth factor (VEGF) regulates angiogenesis, yet therapeutic strategies to disrupt VEGF signaling can interfere with physiologic angiogenesis. In a search for ways to inhibit pathologic production or activities of VEGF without affecting its normal production or functions, we investigated the post-transcriptional regulation of VEGF by the cytoplasmic polyadenylation element-binding proteins CPEB1 and CPEB4 during development of portal hypertension and liver disease. METHODS: We obtained transjugular liver biopsies from patients with hepatitis C virus-associated cirrhosis or liver tissues removed during transplantation; healthy human liver tissue was obtained from a commercial source (control). We also performed experiments with male Sprague-Dawley rats and CPEB-deficient mice (C57BL6 or mixed C57BL6/129 background) and their wild-type littermates. Secondary biliary cirrhosis was induced in rats by bile duct ligation, and portal hypertension was induced by partial portal vein ligation. Liver and mesenteric tissues were collected and analyzed in angiogenesis, reverse transcription polymerase chain reaction, polyA tail, 3' rapid amplification of complementary DNA ends, Southern blot, immunoblot, histologic, immunohistochemical, immunofluorescence, and confocal microscopy assays. CPEB was knocked down with small interfering RNAs in H5V endothelial cells, and translation of luciferase reporters constructs was assessed. RESULTS: Activation of CPEB1 promoted alternative nuclear processing within noncoding 3'-untranslated regions of VEGF and CPEB4 messenger RNAs in H5V cells, resulting in deletion of translation repressor elements. The subsequent overexpression of CPEB4 promoted cytoplasmic polyadenylation of VEGF messenger RNA, increasing its translation; the high levels of VEGF produced by these cells led to their formation of tubular structures in Matrigel assays. We observed increased levels of CPEB1 and CPEB4 in cirrhotic liver tissues from patients, compared with control tissue, as well as in livers and mesenteries of rats and mice with cirrhosis or/and portal hypertension. Mice with knockdown of CPEB1 or CPEB4 did not overexpress VEGF or have signs of mesenteric neovascularization, and developed less-severe forms of portal hypertension after portal vein ligation. CONCLUSIONS: We identified a mechanism of VEGF overexpression in liver and mesentery that promotes pathologic, but not physiologic, angiogenesis, via sequential and nonredundant functions of CPEB1 and CPEB4. Regulation of CPEB4 by CPEB1 and the CPEB4 autoamplification loop induces pathologic angiogenesis. Strategies to block the activities of CPEBs might be developed to treat chronic liver and other angiogenesis-dependent diseases.This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (MINECO; SAF2011-29491 and SAF2014-55473-R to MF; BFU2011-30121, BFU2014-54122-P and Consolider RNAREG CSD2009-00080 to RM; PI13/00341 to JB; PI11/01562 and PI14/00125 to PN), Generalitat de Catalunya (SGR1436 to RM; SGR1108 to JB), Fundación Botín by Banco Santander through its Santander Universities Global Division (to RM), AECC Scientific Foundation (to RM and MF), Worldwide Cancer Research (to RM and MF) and RETIC Cancer RD12/0036/0051/FEDER to PN. GFM is funded by a Juan de la Cierva contract from MINECO. IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from MINECO (Government of Spain). CIBERehd is an initiative from the Instituto de Salud Carlos III. We also thank Dr Francisco X Real for his contribution to knockout mice generation
    corecore